Fun with Primes

Matthias F.J. Hofer
Vienna, August 2017

Let $p_0 = 1, p_1 = 2, \lambda_1 = \{p_1\}, \Delta_1 = 1$ and $\Delta_{n+1} = \Delta_n \ast p_n$ for $n \in \mathbb{N}$.

$k_n = \{x + i\Delta_n : x \in \lambda_n, i \in \{0, \ldots, p_n - 1\}\}$,

$\lambda_{n+1} = k_n \setminus \{p_n \ast \lambda_n^i : i \in \{0, \ldots, \Pi_{i=1}^{n-1}(p_i - 1)\}\}$ =: $\kappa_n \setminus \text{elim}(\kappa_n)$, and $p_n = \lambda_n^1$.

Proposition 1. For all $n \in \mathbb{N}, x \in \lambda_n : \frac{x}{p_i} \not\in \mathbb{N}$ for all $i \in \{1, \ldots, n - 1\}$.

For all $n \in \mathbb{N}$, let P_n be the set of prime numbers up to the n-th prime.

Proposition 2. $P_n = \bigcup_{i=1}^{n} \gamma_i^1$

We can think of this algorithm as an elimination algorithm. Picture λ as a column vector and κ as it’s extension, which basically adds a number of equidistant columns next to the initial one. Then, you run the field alongside growing numbers. The first entry of κ always gets eliminated, then it’s square, and so on, all the products of the actual p with all but the last entries of λ.

To see that we don’t eliminate too many or too few, we compare the cardinality of $\text{elim}(\kappa_n)$ with the n-th prime’s \tilde{p}_n naturally occurring elimination rate defined as:

Definition 1. Let $a_0 = 0$, then for all $n \geq 1$: $a_n = \frac{\Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} a_i)}{\Pi_{i=1}^{n-1} \tilde{p}_i}$

What we need is this:

Proposition 3. $a_n = \frac{\Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} a_i)}{\Pi_{i=1}^{n-1} \tilde{p}_i}$

Proof. We proof this by induction. The cases $n = 1, 2, \ldots$ can easily be verified. We now assume for an arbitrary but fixed n the claim holds. What we need to show is that $\Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} a_i)$:

$\Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} a_i) = \Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} \frac{a_i}{p_n})$

This holds, since the following holds:

\[
\Pi_{i=1}^{n-1} \tilde{p}_i \ast (1 - \sum_{i=1}^{n-1} \frac{a_i}{p_n}) = \Pi_{i=1}^{n-1} \tilde{p}_i \ast (\sum_{i=1}^{n-1} a_i + 1 - \sum_{i=1}^{n-1} \frac{a_i}{p_n}) = \]

\[
\Pi_{i=1}^{n} \tilde{p}_i \ast (\sum_{i=1}^{n-1} a_i + a_n)
\]

$^1 \mathbb{N} = \{1, 2, \ldots\}$. For a set $M = \{x_1, \ldots, x_m\}$ we set $M^1 = x_1, M_0 = 1, M^+ = x_1$ and $M^- = x_m$.
To see more clearly what happens here, we proof the following proposition:

Proposition 4. For all natural numbers \(n \geq 2 \): \(\kappa_{n-1}^n * p_n = p_n + \Delta_{n+1} \)

Proof. \(\kappa_{n-1}^n * p_n = (\lambda_{n-1}^n + \Delta_n - \Delta_{n-1}) * p_n \). This means we have to show \(\lambda_{n-1}^n - \Delta_{n-1} = 1 \). This holds since for all \(m \in \mathbb{N} \):

\[
\lambda_{m+1}^n - \Delta_{m+1} = \lambda_m^n + \Delta_m^* (p_m - 1) - \Delta_{m+1} = \lambda_m^n - \Delta_m = \lambda_1^* - \Delta_1 = 1.
\]

What this means is that for any prime number \(p_n \), there is a set of corresponding initial primes \(\lambda_n \) which generates a corpus \(\kappa_n \) of potential new primes, all of the candidates being not divisible by any prime smaller than \(p_n \). Then, from \(\kappa_n \) we remove all those candidates that are divisible by \(p_n \), and hence end up with a new \(\lambda_{n+1} \) as initial object. Actually, all elements of \(\lambda_m \) with \(\lambda_m^i < p_m^2 \) are primes. The interesting thing now is the way how we relate the eliminations to the structure of \(\kappa \).

Principal Argument:

For any fixed \(n \in \mathbb{N} \) it holds that for any \(k \in \{1, \ldots, |\lambda_n|\} \) there is one unique \(x \in \text{elim}(\kappa_n) \) such that \(x = \lambda_n^k + i \Delta_n \) for some \(i \in \{0, \ldots, p_n - 1\} \).

Proof. Let \(n \) be fixed and assume there are \(r_a, r_b \in \{1\} \cup (\lambda_n \setminus \{\lambda_n^k\}) \), with \(r_a \neq r_b \) and \(x = p_n * r_a = \lambda_n^k + i * \Delta_n, y = p_n * r_b = \lambda_n^k + j * \Delta_n \) for some \(k \in \{1, \ldots, |\lambda_n|\} \), and \(i, j \in \{0, \ldots, p_n - 1\} \) with \(i \neq j \). It then holds:

\[
p_n * (r_a - r_b) = \Delta_n * (i - j),
\]

which is the same as to say \(\frac{p_n * (r_a - r_b)}{\Delta_n} = i - j \).

For \(0 < r_a - r_b < \Delta_n \), although \(r_a - r_b \) can be divisible by factors of \(\Delta_n \) (as for example by \(p_1 = 2 \)), there must remain at least one factor of \(\Delta_n \), since \(\frac{r_a - r_b}{\Delta_n} < 1 \), but of course \(p_n \) cannot be divisible by any such.

What this means is, that if we have \(s_n \) (candidate) prime twins in some \(\lambda_n \), we will have \(s_n * p_n \) prime twin candidates in \(\kappa_n \) while only \(2 * s_n \) can, and will, be eliminated. This leads to the equation \(s_{n+1} = s_n * (p_n - 2) \). For example in \(\lambda_3 \) there is one prime twin (candidate), namely \(5/7 \), and in \(\lambda_4 \) there are \(1 * (5 - 2) = 3 \). In each \(\kappa_n \) there are only numbers not divisible by smaller prime numbers than \(p_n \) and those divisible by \(p_n \) get eliminated before moving on to \(\lambda_{n+1} \).

\[2\] Without loss of generality we assume that \(x > y \) and hence \(i > j \).