section 1, Introduction

The problem we are concerned with deals with independent and identically distributed Rademacher-$(\frac{1}{2})$ random variables X_i, $i \in \mathbb{N}$, with values in $\{-1, +1\}$. For fixed $n \in \mathbb{N}$ we can understand a realization of the random vector $\mathbf{X}_n := (X_1, \ldots, X_n)$ as a lattice path on $\mathbb{N}_0 \times \mathbb{Z}$. We are interested in the joint distribution of the following three random variables:

$$S_n := \sum_{i=1}^n X_i$$
$$A_n := \sum_{i=1}^n S_i$$
$$\tau(-1) := \min \{i \in \mathbb{N} : S_i = -1\}$$

$(S_0 = A_0 = 0)$

So we fix a probability space $(\Omega_n, \mathcal{P}(\Omega_n), \mathbb{P})$ as follows:

$\Omega_n := \{\{z_1, \ldots, z_n\} : \forall i \in \{1, \ldots, n\} \text{ it holds } z_i \in \{-1, +1\}\}$, $\mathcal{P}(\Omega_n)$ is the power-set of Ω_n, and \mathbb{P} the uniform probability measure. The term in question now is:

$$\mathbb{P}(A_n \geq x, \tau(-1) > n \mid S_n = y) \quad \text{for } n \in \mathbb{N}, \ y \in \mathbb{R}_0^+ \text{ and } x \in \mathbb{R}^+.$$

Graphicly speaking, we are interested in how many paths, with fixed start- and endpoint, and the further condition to stay non-negative always, lead to the same area locked up between the path and the $x -$ axis. We use the following decomposition of our term in question:

$$\mathbb{P}(A_n = t, \tau(-1) > n \mid S_n = y) = \mathbb{P}(A_n = t \mid S_n = y) - \mathbb{P}(A_n = t, \tau(-1) \leq n \mid S_n = y) =$$

$$= \mathbb{P}(A_n = t \mid S_n = y) - \sum_{i=1}^n \mathbb{P}(A_n = t, \tau(-1) = i \mid S_n = y) =$$

$$= \mathbb{P}(A_n = t \mid S_n = y) - \frac{1}{\mathbb{P}(S_n = y)} \sum_{i=1}^n \sum_{\varphi \in \Phi(i)} \mathbb{P}(A_i = \varphi, \tau(-1) = i) \mathbb{P}(\tilde{A}_{n-i} = t - \varphi, \tilde{S}_{n-i} = y),$$

(8)

with $t \in \Psi(n)$ and $\tilde{S}_0 = -1$. While we use this notation:

$$x_n^+ := \max \{\zeta \in \mathbb{N} : \exists \omega \in \Omega_n \text{ mit } A_n(\omega) = \zeta, S_n(\omega) = y\} = \frac{1}{\tau}(n^2 - y^2 + 2y + 2ny)$$
$$x_n^- := \min \{\zeta \in \mathbb{N} : \exists \omega \in \Omega_n \text{ mit } A_n(\omega) = \zeta, S_n(\omega) = y\} = \frac{1}{\tau}(y^2 - n^2 + 2y + 2ny),$$

1
\[\theta_i := \frac{i-1}{2}, \] where the interesting values of \(i \) are only the uneven numbers smaller than \(n \).

\[z_i^+ := \max \{ A_i : \tau(-1) = i \} = \theta_i^2 - 1, \] and \(z_i^- := \min \{ A_i : \tau(-1) = i \} = \theta_i - 1, \)

\[\Phi(i) := \left\{ z_i^+ - 2\vartheta : \vartheta = 0, 1, 2, \ldots, \left(\frac{\theta_i}{2}\right) \right\}, \] and \(\Psi(n) := \{ x_n^+ - 2\vartheta : \vartheta = 0, 1, 2, \ldots, x_n^+ \}. \)

The following picture visualizes the situation.

In the terms of (\(\mathcal{K} \)), without the random variable \(\tau(-1) \), we find as common ground that the possible paths have the same start- and endpoint without further restrictions, and thus their distribution only depends on the pathlength and the ups and downs, meaning \(\text{ups} = u := \frac{n+y}{2} \) and \(\text{downs} = d := \frac{n-y}{2} \). We will investigate this distribution generally in the following section, depending on the values \(n \) and \(y \). The remaining terms get treated separately in section 3.

section 2, Integer Partitions

For all \(n \in \mathbb{N} \) we have an unique \(\omega \in \Omega_n \) with \(A_n(\omega) = x_n^+ \). Since we have for all \(\omega \in \Omega_n \), that \(A_n(\omega) \in \Psi(n) \), we need to understand how the deviation of \(A_n(\omega) \) from \(x_n^+ \) can be used to determining the probability \(P(A_n = x_n^+ - 2\vartheta|S_n = y) \). Due to brevity and clarity we will focus on the special case, where \(y = 0 \), and try to convince the reader that the general case is also covered by the presented strategy, which gets illustrated by the following picture.
\(k = 10 \)
\(n = 2 \)
\(x_n + = k^2 \)
\(u = d = k \)
\(x_n^\prime = 2r \) with \(r = \sum_{i=0}^{u-1} (u-i) a_i \)

where \(a_i \) corresponds to the number of consecutive downs after a total of \(i \) ups.

here: \(a_5 = 2, a_7 = 1, a_8 = 2, \) and \(a_9 = 3 \)

By renaming \((\#\equiv a_{u-j})\) we arrive at the following representation of \(r \):

\[
r = \sum_{i=0}^{u-1} (k - i) a_i = \sum_{j=1}^{u} j \#^j = \#^1 + 2 \#^2 + \ldots + u \#^u
\]

Since each value of \(r \) corresponds to a number of paths \(\omega \in \Omega_n \) with \(S_n(\omega) = y \), we have generally to fulfill the extra condition \(\sum_{j=1}^{u} \#^j \leq d \).

\[
\text{IP}(r) := \{ (\#^1, \ldots, \#^r) \in \{0, \ldots, r\}^r : r = \sum_{j=1}^{r} j \#^j \} \text{ is the set of integer partitions of an integer } r.
\]

Generally we are interested in the following function: (for the special case \(y = 0 \), we have \(u = d = k \))

\[
\xi: \mathbb{N}^3 \to \mathbb{N} \text{ with } \xi(r, u, d) = \left| \{ (\#^1, \ldots, \#^u) \in \{0, \ldots, d\}^u : r = \sum_{j=1}^{u} j \#^j, \sum_{j=1}^{u} \#^j \leq d \} \right|
\]

Also, \(|\text{IP}(r)| = \xi(r, r, r)\), and asymptotically we have \(|\text{IP}(r)| \sim \frac{e^{\sqrt{\pi r}}}{4r^{3/2}} \). \[1\]

An exact formula for \(|\text{IP}(r)|\) is rather involved and was presented by Hans Rademacher in 1937. \[1\]

We arrive at \(\xi(r, u, d) \) through splitting the cases:

\textit{subsection 2.1, } \(\xi(r, u, r) \)

We consider the generating function \(R \) for integer partitions which is defined for \(|x| < 1 \). Furthermore we use this notation:

\[
a_n(r) := \xi(r, u, r) \text{ and } q(j, i) := 1_{\{i=0\} \cup \{j \in \mathbb{N}\}}.
\]

Of course we have for \(p, q \in \mathbb{N} \) with \(p \leq q \), that \(\xi(p, q, p) = \xi(p, p, p) \). Furthermore we have \(\forall m \in \mathbb{N} a_m(0) = 1 \), but \(\forall l \in \mathbb{N} \) it is \(a_0(l) = 0 \), and follow the convention \(a_0(0) = 1 \).
\[R(u) := \prod_{m=1}^{u} \frac{1}{(1-x^m)} = \prod_{m=1}^{u} \sum_{j=0}^{\infty} q(j, m) x^j = \sum_{j=0}^{\infty} a_u(j) x^j \]

So, for \(t \in \mathbb{N} \)
\[\sum_{j=0}^{\infty} q(j, t) x^j = \sum_{j=0}^{\infty} a_1(j) x^j, \quad \text{and} \]
\[\sum_{j=0}^{\infty} a(t) x^j = \sum_{j=0}^{\infty} a_{t-1}(j) x^j \sum_{j=0}^{\infty} q(j, t) x^j, \quad \text{and therefore} \]
\[a_t(i) = \sum_{l=0}^{i} q(l, t) a_{t-1}(i-l) \]

Hence we can conclude, that for all \(t \in \mathbb{N} \) and \(i \in \mathbb{N}_0 \) there are numbers \(a_t^1, a_t^i \in \mathbb{Q}_0^+ \), such that
\[a_t(i) := a_t^{i-1}i^{-1} + a_t^{i-2}t^{-2} + \ldots + a_t^0 - a_t^i, \quad \text{e.g.} \]
\[a_t(1) = a_t^0 \]
\[a_t^2(i) = \frac{i}{2} + 1 - \sigma_{t, 2} a_t^0 + a_t^2 - a_t^i \]
\[a_t^3(i) = \frac{i^2}{12} + \frac{7i}{12} + 1 - \left(\sigma_{t, 3}/4 + (3\sigma_{t, 2}^2)/4 + \sum_{l=0}^{i/3} \sigma_{t-3l, 2} \right) = a_t^3 i^2 + a_t^3 i + a_t^0 - a_t^i, \quad \text{where we use the} \]
notation \(\sigma_{t, 1, t} := \left[\frac{i}{t} \right] (i \text{ mod } t) \), for which holds \(\left\lfloor \frac{i}{t} \right\rfloor = \frac{i}{t} - \sigma_{t, 1, t} \), with \(\lfloor x \rfloor \) being the \(\lfloor x \rfloor \) \text{ integers floor function}. \text{One can derive, that} \(a_t^{i-1} = \frac{1}{v(t-1)!} \) and \(a_t^{i-2} = \frac{(1+t)}{4(t-1!)(t-2)!} \).

\textbf{Theorem 1:}

For all \(t, r \in \mathbb{N} \) with \(t < r \) it holds:
1. \(a_r(r) = \sum_{j=1}^{r} a_j(r-j) \)
2. \(a_r(r) = a_r(r) - \sum_{m=0}^{r-1} a_r-1-m(m) \).

\textbf{Corollary:}

1. For \(t < r \leq 2t+1 \) we have:
\[a_r(r) = a_r(r) - \sum_{m=0}^{r-1} a_r(m) \]
2. For \(2t+2 \leq r \leq 3t+2 \) we have:
\[a_r(r) = a_r(r) - \sum_{m=0}^{r-1} a_r(m) - \sum_{m=[r/2]+1}^{r-1} a_r(m) - \sum_{j=0}^{2m-r} a_r(j) \).

\textbf{subsection 2.2, \(\xi(r, u, d) \)}

\[\xi(r, u, d) = \xi(r, u, r) - \sum_{(\#^1, \ldots, \#^u) \in \{0, \ldots, r\}^u} r = \sum_{j=1}^{u} j \#^j, \sum_{j=1}^{u} \#^j > d \] := \(\xi(r, u, r) - g(r, u, d) \)

\textbf{Theorem 2:}

a. Generally for \(r \geq 2t+1 \):
\[\xi(r, t, l) = \xi(r, t, r) - g(r, t, l) = \xi(r, t, r) - \sum_{l=0}^{l-1} a_t(l) - \sum_{l=k}^{r-1} \xi(l, t-1, r-l) \]
b. In particular:
1. For \(r \in \{ t+1, \ldots, 2t \} \) we have:
\[\xi(r, t, l) = \xi(r, t, r) - g(r, t, l) = a_r(r) - \sum_{m=0}^{r-1} a_m(m) \]
2, for \(r \in \{2t+1, \ldots, 3t+1\} \) we have:
\[
\xi(r, t, l) = \bar{a}(r) - \sum_{l=0}^{r-1} a(l) - \sum_{l=k}^{r-1} (a_{l-1}(l) - \sum_{m=0}^{2l-r-1} a_{l-2}(m)).
\]

The most general setting with \(r > d \) and \(u > d \) can be treated with the same technique used in the proof of Theorem 2, but the case distinction then becomes a bit longish as do the formulas.

section 3, non-negative paths

We consider the Index \(i \) in \((\mathfrak X)\) fixed as well as the value of \(j \in \{0, 1, 2, \ldots, \binom{d}{2}\}\), and work with \(\theta \equiv \theta_i \).

The number of possible paths here is \(C_\theta := \binom{2\theta}{\theta_\theta + 1}, \) while these numbers are known as Catalan numbers, for \(\theta \in \mathbb{N} \). The ones leading to \(A_i = z_1^i - 2j \) is captured by the term \(F_\theta(\theta + 2j) \), for which we introduce its generating function: \(\varphi_\theta(z) = \sum_{j=0}^{\binom{d}{2}} F_\theta(\theta + 2j) z^j \).

Theorem 3: [2]

It holds, that \(\varphi_m(z) = \sum_{i=1}^{m} \varphi_{m-i}(z) \varphi_{i-1}(z) z^{i-1} \) für \(m = 1, 2, \ldots \) und \(\varphi_0(z) = 1 \).

section 4, consolidation

Theorem 4:

\[
\mathbb{P}(A_n = x_n^+ - 2r, \tau(-1) > n | S_n = y) = \frac{\xi(r, u, d)}{\binom{d}{2}} - \sum_{i=1}^{n-1} \mathbb{P}(\mathbb{N}_{\mathbb{N}}) \sum_{i \in \mathbb{N}} \left(\frac{F_\theta(\xi(i, r, u, d)) \mathbb{P}(\tau(\xi(i, r, u, d) \in \mathbb{N}))}{\binom{d}{2}} \right)
\]

using this notation:

1. \(n - i = \bar{u} + d \) and \(y + 1 = \bar{u} - d \), hence \(\bar{u} = \frac{n - i + y + 1}{2} \) and \(d = \frac{n - i - y - 1}{2} \)
2. \(x_n^+ = \bar{u} (\bar{u} - 2) + \frac{1}{2} (y - y^2) + 1 \) and \(x_n^- = d (d - 2) + \frac{1}{2} (y + y^2) \)
3. \(G_n := \{0, 1, \ldots, \frac{x_n^+ - x_n^-}{2}\} \), and 4. \(r(\varphi) = \frac{x_n^+ - x_n^- + 2r + \varphi}{2} \).

When we have \(y = 0 \), we can assume without loss of generality, that \(r \in \{0, 1, \ldots, \frac{k^2 - k}{2}\} \), since otherwise \((\mathfrak X)\) is a priori 0.

Theorem 5:

For \(r = \mu k^2 \) and \(\mu < \left(\frac{\ln (4)}{\pi \sqrt{2}} \right)^2 \approx 0.292 \) we have:

\[
\mathbb{P}(A_n \geq x_n^+ - 2r, \tau(-1) > n | S_n = 0) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]

References: